Probability

Examples

- 1. What are the following terms:
 - Outcome space
 - Outcomes
 - Events
 - Random Variables
 - Discrete vs Continuous Random Variables
 - PDF/CDF
 - PMF/CDF
 - Binomial coefficient
 - Pascal's triangle
 - Binomial distribution
 - Expected value
 - Payout of a game
 - $E[X], E[X^2], \text{ etc.}$
 - Independent events
- 2. Let A, B be events in a probability space Ω . Suppose $P(A) = 0.15, P(B) = 0.25, A \cap B = \emptyset$. Compute: $P(\Omega \setminus B), P(B \setminus A), P(A \cup B), P(\Omega)$.

Solution:
$$P(\Omega \backslash B) = 1 - P(B) = 0.75$$
. $P(B \backslash A) = P(B) = 0.25$ since $B \backslash A = B$. $P(A \cup B) = P(A) + P(B) = 0.4$ since $A \cap B = \emptyset$. Finally $P(\Omega) = 1$.

Problems

3. **TRUE** False The value of a PMF at a point represents the probability of picking that number.

Solution: This is true but it is **not** true for a PDF.

4. True **FALSE** Associated to any random variable X is a PDF.

Solution: Associated to a continuous random variable is a PDF, but for a discrete random variable, the PDF is replaced with a PMF.

5. Question 6, HW 23